Hypoglycemia alarm enhancement using data fusion.
نویسندگان
چکیده
BACKGROUND The acceptance of closed-loop blood glucose (BG) control using continuous glucose monitoring systems (CGMS) is likely to improve with enhanced performance of their integral hypoglycemia alarms. This article presents an in silico analysis (based on clinical data) of a modeled CGMS alarm system with trained thresholds on type 1 diabetes mellitus (T1DM) patients that is augmented by sensor fusion from a prototype hypoglycemia alarm system (HypoMon). This prototype alarm system is based on largely independent autonomic nervous system (ANS) response features. METHODS Alarm performance was modeled using overnight BG profiles recorded previously on 98 T1DM volunteers. These data included the corresponding ANS response features detected by HypoMon (AiMedics Pty. Ltd.) systems. CGMS data and alarms were simulated by applying a probabilistic model to these overnight BG profiles. The probabilistic model developed used a mean response delay of 7.1 minutes, measurement error offsets on each sample of +/- standard deviation (SD) = 4.5 mg/dl (0.25 mmol/liter), and vertical shifts (calibration offsets) of +/- SD = 19.8 mg/dl (1.1 mmol/liter). Modeling produced 90 to 100 simulated measurements per patient. Alarm systems for all analyses were optimized on a training set of 46 patients and evaluated on the test set of 56 patients. The split between the sets was based on enrollment dates. Optimization was based on detection accuracy but not time to detection for these analyses. The contribution of this form of data fusion to hypoglycemia alarm performance was evaluated by comparing the performance of the trained CGMS and fused data algorithms on the test set under the same evaluation conditions. RESULTS The simulated addition of HypoMon data produced an improvement in CGMS hypoglycemia alarm performance of 10% at equal specificity. Sensitivity improved from 87% (CGMS as stand-alone measurement) to 97% for the enhanced alarm system. Specificity was maintained constant at 85%. Positive predictive values on the test set improved from 61 to 66% with negative predictive values improving from 96 to 99%. These enhancements were stable within sensitivity analyses. Sensitivity analyses also suggested larger performance increases at lower CGMS alarm performance levels. CONCLUSION Autonomic nervous system response features provide complementary information suitable for fusion with CGMS data to enhance nocturnal hypoglycemia alarms.
منابع مشابه
Hypoglycemia Early Alarm Systems Based On Multivariable Models.
Hypoglycemia is a major challenge of artificial pancreas systems and a source of concern for potential users and parents of young children with Type 1 diabetes (T1D). Early alarms to warn the potential of hypoglycemia are essential and should provide enough time to take action to avoid hypoglycemia. Many alarm systems proposed in the literature are based on interpretation of recent trends in gl...
متن کاملHypoglycemia early alarm systems based on recursive autoregressive partial least squares models.
BACKGROUND Hypoglycemia caused by intensive insulin therapy is a major challenge for artificial pancreas systems. Early detection and prevention of potential hypoglycemia are essential for the acceptance of fully automated artificial pancreas systems. Many of the proposed alarm systems are based on interpretation of recent values or trends in glucose values. In the present study, subject...
متن کاملHypoglycemia prediction with subject-specific recursive time-series models.
BACKGROUND Avoiding hypoglycemia while keeping glucose within the narrow normoglycemic range (70-120 mg/dl) is a major challenge for patients with type 1 diabetes. Continuous glucose monitors can provide hypoglycemic alarms when the measured glucose decreases below a threshold. However, a better approach is to provide an early alarm that predicts a hypoglycemic episode before it occurs, allowin...
متن کاملIncreasing the Low-Glucose Alarm of a Continuous Glucose Monitoring System Prevents Exercise-Induced Hypoglycemia Without Triggering Any False Alarms
The use of continuous glucose monitoring systems (CGMSs) with lowglucose alarms is advocated as a means to decrease the risk of hypoglycemia in type 1 diabetes. Unfortunately, marked mismatches between CGMS readings and actual blood glucose (BG) concentrations limit the usefulness of CGMS in preventing hypoglycemia (1). Although we showed recently that raising the alarm level to compensate for ...
متن کاملRock physical modeling enhancement in hydrocarbon reservoirs using Choquet fuzzy integral fusion approach
Rock physics models are widely used in hydrocarbon reservoir studies. These models make it possible to simulate a reservoir more accurately and reduce the economic risk of oil and gas exploration. In the current study, two models of Self-Consistent Approximation followed by Gassmann (SCA-G) and Xu-Payne (X-P) were implemented on three wells of a carbonate reservoir in the southwest of Ira...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of diabetes science and technology
دوره 4 1 شماره
صفحات -
تاریخ انتشار 2010